Популярные новости |
|
|
|
мы в инете |
Мы Вконтакте:
vkontakte.ru/club6678288
|
|
|
|
юмор » загадки » Математические : загадка |
|
автор: akim | 23-06-2008, 23:57 | Просмотров: 3731 |
Загадка: Имеется набор из 1999 монет. Известно, что 1410 из них - фальшивые. Фальшивая монета по весу отличается на 1 г от подлинной, причем одни фальшивые монеты могут быть легче, а другие тяжелее подлинных. У нас есть чашечные весы, которые умеют показывать разницу в весе. Как за одно взвешивание определить подлинность любой монеты из набора?
Ответ: Взвешиваем все монеты кроме этой и смотрим на разность в весе. Обозначим вес нормальной монеты как N, тогда все монеты будут весить либо 1998*N+2x.
|
|
Комментарии (0) Подробнее/скачать |
|
|
юмор » загадки » Математические : загадка |
|
автор: akim | 23-06-2008, 23:56 | Просмотров: 3675 |
Загадка: Имеется 100 серебряных монет разных размеров и 101 золотая монета также разных размеров. Если у одной монеты размер больше, чем у другой, то она и больше весит, но это верно только для монет, сделанных из одного и того же металла. Все монеты можно легко упорядочить по размерам на глаз. Отличить золота от серебра можно тоже :-). Как за 8 взвешиваний определить, какая монета из всех 201 штук занимает по весу ровно 101-е место? Все 201 монеты также различны по весу. Весы с двумя чашками, как обычно.
Ответ: Раскладываем в два ряда все монеты в порядке возрастания размера: золотые отдельно, серебряные отдельно. Пусть первая по счету в каждом ряду монета самая большая (и тяжелая). Среднюю по весу монету можно найти, последовательно взвешивая срединные монеты каждой из оставшихся линеек. 1) взвешиваем 51-ю золотую монету и 50-ю серебряную. Если первая тяжелее, то искомая монета находится где-то среди 52-101 золотой и 1-50 серебряной. Если легче, то искомая монета находится где-то среди 1-51 золотой и 51-100 серебряной. То есть, 51+50 монет. Остальные можно отложить. 2) взвешиваем опять срединные монеты. Так как число вариантов растет в геометрической прогрессии, буду рассматривать только итоги ;) Из 51+50 монет выбираем сравниваем 25 и 26 монеты. Остается 26+25 монет. 3) Взвешиваем 13 и 13 монеты. Остается 13+13 или 13+12. Далее буду рассматривать только случай 13+13, 13+12 аналогично. 4) Взвешиваем 7 и 7. Остается 7+7. 5) Взвешиваем 4 и 3. Остается 4+3. 6) Здесь могу поподробнее, так как монет осталось мало. Пусть остались золотые монеты 1234 и серебряные ABC (все в порядке возрастания). Взвешиваем 2 и B. Если 2>B, то средняя монета какая-то из 34AB, если нет, то из 12C. Рассмотри первый случай. 7) Взвешиваем 3 и A. 8а) если 3 8б) если 3>A, то взвешиваем 4 и A. Какая больше, та и искомая.
|
|
Комментарии (0) Подробнее/скачать |
|
|
юмор » загадки » Математические : загадка |
|
автор: akim | 23-06-2008, 23:56 | Просмотров: 3352 |
Загадка: Еще известная задача такого уровня: (Возможно это легенда, но очень уж красивая) Во времена Второй Мировой Войны, Английские ученые подбросили Немецким ученым, что бы они не решали военные проблемы, а решали головоломки, следующую логическую задачу. Кладоискатели нашли клад и записку в которой было написано: В этих 20 мешках с золотыми монетами есть один мешок с фальшивыми монетами. Известно, что фальшивая монета в два раза тяжелее настоящей.
Задача: Как при помощи одного взвешивания определить в каком мешке находятся фальшивые монеты?
Примечание. Взвешиванием называется тот момент, когда весы, типа коромысла, станут горизонтально, показывая, что на правой стороне весов и на левой стороне одинаковый вес. И еще Англичане приделали приписку к задаче, что они потратили 10 тысяч человеко-часов для решения этой задачи.
Ответ: Итак, берем из первого мешка 2 монеты, из второго - 4, из третьего - 6 и т.д. Эту кучу монет бросаем на одну чашу весов, после чего уравновешиваем весы, насыпая на вторую чашу монеты из какого-нибудь одного, например первого мешка. Если бы все монеты были настоящими, то чаша 1 весила бы 420 у.е. Но там-то у нас 2*х фальшивых монет, поэтому она весит 420+2*х у.е. Предположим, что мешок 1, которым мы уравновешивали весы, содержит настоящие монеты, тогда количество монет, истраченных на равновесие, будет где-то между 422 и 460. Нам остаётся только найти х: х = (кол-во понадобившихся монет - 420)/2. Если же мешок, монетами из которого мы уравновешиваем весы, оказался фальшивым, то равновесие будет достигнуто где-то на между 211 и 230 монетами. Естественно мы тогда поймём, что что-то здесь не так.
|
|
Комментарии (0) Подробнее/скачать |
|
|
юмор » загадки » Математические : загадка |
|
автор: akim | 23-06-2008, 23:55 | Просмотров: 2943 |
Загадка: А вот задача похожая на предыдущую, но немного сложнее: В аптеку поступило сильнодействующее лекарство - 8 упаковок по 150 таблеток. Следом пришло сообщение, что в этой партии есть несколько упаковок с бракованными таблетками - их вес на 1 мг больше нормальной дозы. Как за одно взвешивание выявить все упаковки с бракованными таблетками? Упаковки можно вскрывать.
Ответ: Следует учинить непересекающиеся подмножества таблеток от разных упаковок: взять из первой упаковки одну таблетку, из второй - две, из третьей - четыре, из четвёртой - восемь, из пятой - 16, из шестой - 32, из седьмой - 64, из восьмой - 128. Всё это взвесить. Вычесть из полученного веса идеальный вес (идеальный вес каждой таблетки известен из документации, но можно обойтись и без него - подумайте как). Полученный излишек веса (он уже нормализован за счёт единичного излишка веса каждой таблетки) перевести в двоичный вид (ведь мы сформировали подмножества по двоичному закону). В этом числе номера разрядов, равные единице, и будут показывать номера бракованных упаковок.
|
|
Комментарии (0) Подробнее/скачать |
|
|
юмор » загадки » Математические : загадка |
|
автор: akim | 23-06-2008, 23:55 | Просмотров: 3490 |
Загадка: Среди 101 одинаковых по виду монет одна фальшивая, отличающаяся по весу. Как с помощью чашечных весов без гирь за два взвешивания определить, легче или тяжелее фальшивая монета? Hаходить фальшивую монету не требуется.
Ответ: Взвешиваешь 50 и 50 монет: 1) Равенство: Беpем оставшуюся монету и ставим ее в левую кучку вместо одной из имеющихся там: 1.1 Левая кучка тяжелее => фальшивая монета тяжелее. 1.2 Левая кучка легче => фальшивая монета легче.
2) Hеpавенство: Беpем более тяжелую кучку и разбиваем ее на две кучки по 25 монет. 2.1 Вес кучек одинаковый => фальшивая монета легче. 2.2 Вес кучек не
|
|
Комментарии (0) Подробнее/скачать |
|
|
|
|
информация на сайте предоставлена в ознакомительных целях. Все права принадлежат авторам и владельцам.
www.sattarov.net Design by Akim © 2011
|